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AN INDEX THEOREM FOR WIENER-HOPF OPERATORS
ON THE DISCRETE QUARTER-PLANE

L. A. COBURN, R. G. DOUGLAS & 1. M. SINGER

1. Introduction

Let T7 be the j-dimensional torus, represented as j-tuples of complex numbers
with modulus equal to one. Letting L%(T7) be the usual Hilbert space of square-
integrable complex functions on 77 with respect to normalized Haar measure,
we consider the subspace H*(T”) consisting of functions in L*(77) which are
boundary values of analytic functions in the j-disc {(z;, - - -, z;) 1 |z| < 1}. Itis
well-known that {z,"* - .- z,*: n, > 0} forms an orthonormal basis for H*(T7).
We denote by P/ the orthogonal projection from L% 77) onto H*(T”). Note that
Pi=P @ ... PP (rtimes) is the orthogonal projection from L*T?), =
L(TH® .. - B LATY) (r times) onto H(TY), = H(TH® - - - @ HY(T) (r times).

Now for ¢(z,, - - -, z;) a r X r matrix-valued complex continuous function on
T?, we define a bounded operator on H*(T7), by

Wi = PAgf) .

These are the Wiener-Hopf operators. We note that the Fourier transform takes
LX(T?), onto LXZ7), and HYT?), onto L*((Z*)?),. Hence, the W, are unitarily
equivalent via the Fourier transform to certain matrix convolution operators
on the discrete semigroup (Z+)7.

In this paper, we consider the C*-algebra .o/, of operators on H*(T7), gen-
erated by all the W,. Our main result is a “canonical form” for the case j = 2
which gives the index of A whenever A4 is a Fredholm operator in 7.

Our analysis depends upon the fact the structure of &, is rather completely
understood [1}, [3]. In particular, W, in &7, is Fredholm if and only if determi-
nant (¢) = 0 and

index (W,) = —winding number (determinant (¢)) .

The situation in «/,* is quite different. It was shown in [4], [7] that a W, in
&.* is a Fredholm operator if and only if ¢ is non-vanishing and homotopic in
C(T?, C — 0) to the constant 1 (here, C(X,Y) = Y< denotes the space of con-
tinuous functions from X to Y with the appropriate matrix supremum norm
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topology). Hence, the index of Fredholm W, in &, is always zero. On the other
hand, there are Fredholm operators in /%, not of the form W,, which have
arbitrary index [4]. The situation in =7,* for r > 2 is again distinctive. We shall
see that there are Fredholm W, in .«/,* with arbitrary index.

2. Preliminary results

Henceforth, we restrict our attention to 77 for j = 1,2. Let 2,7 be the
algebra of all compact operators on H*(T”),. Further, let G, be the group of
invertibles in «.!, and let K, be the group of all elements in G, which have
the form I + K for K in o !. Finally, for GL, the complex r X r general linear
group, let H, be the subgroup of GL,” whose elements have determinants
with winding number zero.

We recall that in o7,/ [2], | W, || = || || and W¥ = W ;. It follows that W, and
W, generate «7,*. We also recall that .«/,' = {W, + K: ¢ continuous, K ¢ %,'}
and the map

0‘(W¢ + K) = 4]

gives a *-homomorphism from «7,! onto the algebra M,7 of r X r matrix-valued
continuous functions on 7. The kernel of ¢ is precisely o7,
Now to each element of .«7,* by the analysis of [4] there corresponds a pair

(0,(2), 0,(2)) in C(T, o, D C(T, ") satisfying
(*) olo(DIw) = olo,(W)I(2) .

Further, it is easy to check that any pair (¢,(2), 0,(z)) satisfying (x) corresponds
to an element of «/,%. Finally, the map constructed in [4] which sends 4 to
(0.(A)(2), 6,(A)(2)) is a *~-homomorphism from 7,* onto

21 ={(0(2), 05(2)) in (T, &,") @ C(T, 1) () holds}

with kernel 22,2, We recall that if W,,, W, are the generators of .« 2, then the
map A — (6,(4)(z), 6,(4)(2)) is determined by

o(Wu)2) =S, o (W)@ = o ;
a(W,)(2) =2, (W)@ =S,

where § is the “unilateral shift” generating .o7,!. Note that § is just “W, in «7,'”,
an unfortunate notational ambiguity.

By our previous remarks, an element 4 of .«7,? is a Fredholm operator (i.e.,
A has closed range and finite-dimensional kernel and cokernel) if and only if
(0,(A)(2), 6,(A)(2)) 1s in C(T, G,) D C(T, G,). The main result of this paper ex-
presses the index of Fredholm A in .«,? in terms of (¢,(A4)(2), ¢,(A4)(2)). Recall
that
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index (4) = dimension (ker 4) — dimension (coker A)

is a continuous homomorphism from the semigroup of Fredholm operators in
0 to Z.
We require some preliminary observations. Notice that

i [

{1} —K, G, H, 1.

is an exact sequence of topological groups and G, RN H, is a principal fibre
bundle with fibre X,. Now noting that K,, G,, H, are all arcwise connected,
the homotopy exact sequence for bundles gives

m(H,) — 1K) —> 7(G,) = z(H,) — 0 ,

where the group r,(X) is the set of path components of X5" [5], with S™ the
n-dimensional sphere.
Lemma. For (0,(2), 0,(z)) invertible in Y, we have

Ugr[oi(z)]ar - [O'(O'i(Z))]HT =0.

Proof. It suffices to show that ¢[e,(z)](w) is homotopic to 1 in GL,”*. Now
suppose (0,(2), 6,(z)) is invertible in 3,. Then

f:(z, w) = determinant g[g,(z)1(w)
has winding number zero for each fixed z. But
f1(z: W) = fz(w> Z) s

so f,(z, w) has winding number zero for each fixed w. An easy argument now
shows that f; is homotopic to the constant 1 in C(7%, C — 0).

Let SL, be the subgroup of GL, consisting of matrices with determinant
identically one. Consider the exact sequence

d
(1} —SL,” —GL™ =5 (c — o) — (1} .

Since det (determinant) has an obvious cross-section, it is only necessary to
check that SL,™* is arcwise-connected. But this is an easily established topo-
logical fact.

3. Main theorem

We can now prove the main result.

Theorem. Let A be a Fredholm operator in &£ ,* with symbol pair (¢,(2),
0,(2)). Then there is a path (0,(2),, 0,(z),) of invertible elements in 3, such that
0.(2), = 0.(2), 0,(2)y = 0,(z) and such that
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™ "

o2y = - . s 0(2);, =

for integers n and m, and the index of A is given by index A = —(m + n).

(Note: In general the path (¢,(z);, 9,(z),) is not unique and, for » > 1, neither
m nor r is uniquely determined.)

Proof. By the Lemma, ¢;,[0,] = 0. Hence, there is a homotopy ¢,(z); in .
G, with 0 <t < & such that ¢,(z), = ¢,(z) and ¢,(z),,, is in C(T, K,). Consider
olo(2),](.), which is a homotopy between ale,(2)1(.) and 1 in C(T, H,). Now
C(T,H,) C C(I*,GL,), so alo,(.),](.) is a homotopy between a[o,(.)](.) and 1
in C(T?, GL,). Now for each fixed z, detgle,(.);](z) is an arc in C(T,C — 0)
joining det o[¢,(.)]1(z) to 1. Hence, the winding number of det ¢[o,(.),1(z) is 0
for each z, and so ¢le¢,(.)](z) is in C(T, H,).

Now we have ole,(2)I(w) = olo,(w)1(z) by (*) so that ¢le,(2)1(.) = ole,(.),1(z).
The “second covering homotopy theorem” [9] now applies to give the existence
of an arc ¢,(z), in C(T, G,) such that ¢,(z), = g,(z) and

olo(2),1(.) = ol () 1(2) .

Thus, (6,(z);,0,(z);) is a path of invertible elements in ), such that ¢,(z), =
0,(z), 0(z), = 0,(z) and ¢,(2),, is in C(T, K,). Hence

1= 0'[0'1(2)1/2](W) = 0'[0'1(W)1/2](Z) = 0'[0'2(1)1/2](“))

implies that ¢,(2),,, is in C(T, K,) as well.
Each element of C(T, K,) is homotopic in C(7, K,) to an element of the form

[8]. This is the construction which shows that z,(K,) = Z. Further, any pair
of elements in C(T, K,) automatically satisfies (*). The construction of the
desired path is now obvious. '
To prove the index theorem, we recall that by a standard result for Fredholm
operators, A has the same index as any Fredholm operator with symbol pair
(6,(2)1, 0,(2),). The desired result then follows from the facts that the index of
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a product of Fredholm operators is the sum of the indices and that the operator
W, + d— W, )W W, is Fredholm with index —1 and symbol pair

Z

GI(Z) =1 > GZ(Z) ==
0 1

4. Some examples

We consider some particular Wiener-Hopf operators in .« ,2. Letting

@w ="
Z, W) =
it follows from the criterion of [4] discussed above that W,, which has symbols

e (S oo (5
Z) = 5 ) = | _ 5 3
7 S*m znp o g

is a Fredholm operator. In fact, W, is just the “smash product” of §* with $*™
described in [6]. It can be seen by direct computation that this operator has
index —mn. However, it is instructive to follow the proof of the Theorem.

It is easy to see that ¢, and g, are both homotopic to 1 in C(T', G,). We write
down the homotopies

z —(1 — 2p)s™
_ 0<t<y,
(1 — 28)§%m hag |
22lcos 2n(t — L) Isin2z(¢ — 1)
0,(2), = . o INIEESES T
~1Isin2x(t — 1) Z"I cos 2x{t — %)
Isin 27(t — 2 Icos2n(t — 2
n(t — %) . n(t — %) sci<t,
—Icos2n(t — 3) Isin2z(t — £
/(1 —2H8 —z"l
( . ) 0<t<y,
il | 1 — 2n)8*"
0,(2); = .
Isinz(t — %) —z™lcosn(t — %)
_ . §<1<1
Z™lcos n(t — 3) Isinz(z — 1)

Note that for >0, in general, ¢[o,(z),J(w) #* c¢lo,(W),1(2) so the pair (g,(z),,
0,(2),) is not the “symbol” of any operator in <72
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Our theorem implies that there is a §,(z), so that §,(2), = 0,(2) and &,(z), is
in C(T, G, for all £, 0 < ¢t <.1 with

al:(2) Jw) = olo(W).J(2) ,

so that (0,(2),, 6,(z),) is the “symbol” of some Fredholm operator A4, in «7,* for
0 <1< 1. We now explicitly construct §,(z), as follows: Let P, be the projec-
tion on the kernel of $**. Then, with Q, =1 — P,,

. —z"P, 0 —(1 - 2Hz"Q,
(O S*r ) + <(1 — 207" 0 )
' 0<t<y,
S*cos 2n(t — 3) —z™P, + Q,sin 2zt — 1)
42);, = (—I sin 2z(t — % §* cos 2z(t — §) )
<1<y,
(—z"P, + Q,)sin2z(t — %) (—z"P, + Q,)cos2z(t — §)
( —1I cos2z(t — %) Isin2x(z — 2) )
$<r<l .
Note that
N —z"P, + I —P,) O
5,(z), = ( 0 I) )

$0 [6,(2),]x, = mn in 7,(K,), and the index of W, is —mn.

This example has an interesting consequence. Since #,(mn) = ipl6,(2), 15, =
[¢,(2),]s, = O, it follows that i,, = 0. If (¢,(2), 6,(2)) is invertible in };,, then
we already know that ¢,,[6,(2)1;, = 0,l0.(2)];, = O from the Lemma. But —

wH,) — 1K) =5 7(G) 5 1 (H,) —0 is exact, 5o [0,(2)]s, = [0,2)]s, =
0.
The case r = 1 is quite different, because w,(H,) = 0 and #z(K,) = Z so

i, # 0. In fact, G, AN H, has a global cross-section (¢ — W,), and so G, is
homeomorphic with K, x H, from bundle theory [9], whence #,(G) = Z X Z
since m,(H,) = Z. On the other hand, i,, = O easily implies that i, = O for

r > 2 which further implies that G. RN H, does not have a global cross-section
for r > 1.
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